This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063489 a(n) = (2*n-1)*(5*n^2-5*n+6)/6. 64

%I

%S 1,8,30,77,159,286,468,715,1037,1444,1946,2553,3275,4122,5104,6231,

%T 7513,8960,10582,12389,14391,16598,19020,21667,24549,27676,31058,

%U 34705,38627,42834,47336,52143,57265,62712,68494,74621,81103,87950

%N a(n) = (2*n-1)*(5*n^2-5*n+6)/6.

%H Harry J. Smith, <a href="/A063489/b063489.txt">Table of n, a(n) for n = 1..1000</a>

%H T. P. Martin, <a href="http://dx.doi.org/10.1016/0370-1573(95)00083-6">Shells of atoms</a>, Phys. Rep., 273 (1996), 199-241, eq. (10).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1).

%F G.f.: x*(1+x)*(1+3*x+x^2)/(1-x)^4. - _Colin Barker_, Mar 02 2012

%F a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4), with a(1)=1, a(2)=8, a(3)=30, a(4)=77. - _Harvey P. Dale_, Aug 20 2012

%F E.g.f.: (-6 + 12*x + 15*x^2 + 10*x^3)*exp(x)/6 + 1. - _G. C. Greubel_, Dec 01 2017

%t Table[(2n-1)(5n^2-5n+6)/6,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,8,30,77},40] (* _Harvey P. Dale_, Aug 20 2012 *)

%o (PARI) { for (n=1, 1000, write("b063489.txt", n, " ", (2*n - 1)*(5*n^2 - 5*n + 6)/6) ) } \\ _Harry J. Smith_, Aug 23 2009

%o (MAGMA) [(2*n-1)*(5*n^2-5*n+6)/6: n in [1..30]]; // _G. C. Greubel_, Dec 01 2017

%o (PARI) x='x+O('x^30); Vec(serlaplace((-6 + 12*x + 15*x^2 + 10*x^3 )*exp(x)/6 + 1)) \\ _G. C. Greubel_, Dec 01 2017

%Y 1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

%Y Partial sums of A010001.

%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, Aug 01 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 22:27 EST 2019. Contains 329880 sequences. (Running on oeis4.)