login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063416 Multiples of 7 such that the sum of the digits is equal to 7. 16
7, 70, 133, 322, 511, 700, 1015, 1141, 1204, 1330, 2023, 2212, 2401, 3031, 3220, 4102, 5110, 7000, 10024, 10150, 10213, 10402, 11032, 11221, 11410, 12040, 12103, 13111, 13300, 15001, 20041, 20104, 20230, 21112, 21301, 22120, 23002, 24010 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Numbers are all 7 mod 63.

LINKS

Harry J. Smith and Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 700 terms from Harry J. Smith)

EXAMPLE

133 = 19*7 and 1+3+3 = 7, so 133 is a term of this sequence.

MATHEMATICA

Select[Range[7, 25000, 7], Plus @@ IntegerDigits[ # ] == 7 &]

PROG

(ARIBAS): var stk: stack; end; minarg := 0; maxarg := 5000; n := 7; for k := minarg to maxarg do m := k*n; s := itoa(m); for j := 0 to length(s) - 1 do stack_push(stk, atoi(s[j..j])); end; if sum(stack2array(stk)) = n then write(m, " "); end; end; .

(PARI) SumD(x)= { local(s); s=0; while (x>9, s+=x-10*(x\10); x\=10); return(s + x) } { n=0; forstep (m=7, 10^9, 7, if (SumD(m) == 7, write("b063416.txt", n++, " ", m); if (n==700, break)) ) } [From Harry J. Smith, Aug 20 2009]

CROSSREFS

Cf. A069521 to A069530, A069532, A069533, A069534, A069535, A069536, A069537, A052217, A063997, A069540, A062768.

Row n=7 of A245062.

Sequence in context: A136960 A003363 A069542 * A201065 A043034 A015251

Adjacent sequences:  A063413 A063414 A063415 * A063417 A063418 A063419

KEYWORD

base,easy,nonn

AUTHOR

Klaus Brockhaus, Jul 20 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 20:37 EDT 2017. Contains 288840 sequences.