%I #7 May 10 2013 12:44:50
%S 0,0,0,0,0,3413114880,27741797744640,1358238417577574400,
%T 158642247173060689920000,19305274051251991346235310080,
%U 12592116839628085308180342547415040
%N Number of cyclic subgroups of order 9 of general affine group AGL(n,2).
%C Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).
%H V. Jovovic, <a href="/A062766/a062766.pdf">Cycle index of general affine group AGL(n,2)</a>
%F a(n) = (A063392(n)-A063386(n))/6.
%Y Cf. A063406-A063413, A063385-A063393, A062710.
%K nonn
%O 1,6
%A _Vladeta Jovovic_, Jul 17 2001