%I #7 May 10 2013 12:44:50
%S 0,0,112,33600,17387776,25992336384,82647777759232,833357980338831360,
%T 28526490693606372081664,3614600380702981731403431936,
%U 1544913993707932218852890836467712
%N Number of cyclic subgroups of order 6 of general affine group AGL(n,2).
%C Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).
%H V. Jovovic, <a href="/A062766/a062766.pdf">Cycle index of general affine group AGL(n,2)</a>
%F a(n) = (A063389(n)-A063386(n)-A063385(n)+1)/2.
%Y Cf. A063406-A063413, A063385-A063393, A062710.
%K nonn
%O 1,3
%A _Vladeta Jovovic_, Jul 17 2001