login
A063407
Number of cyclic subgroups of order 4 of general affine group AGL(n,2).
0
0, 3, 210, 21840, 4248240, 2439718848, 4490186803200, 21306683553761280, 243362078944548372480, 8447714338361362064867328, 916006668995029638614026813440, 257020596641378222874290942398955520
OFFSET
1,2
COMMENTS
Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).
FORMULA
a(n) = (A063387(n)-A063385(n))/2.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jul 17 2001
STATUS
approved