This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063377 Sophie Germain degree of n: number of iterations of n under f(k) = 2k+1 before we reach a number that is not a prime. 6
 0, 5, 2, 0, 4, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) >= 1 means that n is prime; a(n) >= 2 means that  is a Sophie Germain prime. Is the Sophie Germain degree always finite? Is it unbounded? LINKS Antti Karttunen, Table of n, a(n) for n = 1..20000 Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000 EXAMPLE a(2)=5 because 2, 5, 11, 23, 47 are prime but 95 is not. PROG (PARI) a(n) = {if (! isprime(n), return (0)); d = 1; k = n; while(isprime(p = 2*k+1), k = p; d++; ); return (d); } \\ Michel Marcus, Jul 22 2013 CROSSREFS Cf. A005384, A063378, A093008, A093007, A292936. Sequence in context: A093814 A212155 A269328 * A296493 A196821 A147710 Adjacent sequences:  A063374 A063375 A063376 * A063378 A063379 A063380 KEYWORD nonn AUTHOR Reiner Martin (reinermartin(AT)hotmail.com), Jul 14 2001 EXTENSIONS Term a(1) = 0 prepended by Antti Karttunen, Oct 09 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 03:36 EDT 2019. Contains 322294 sequences. (Running on oeis4.)