login
Dimension of the space of weight n cuspidal newforms for Gamma_1( 36 ).
0

%I #13 Feb 17 2025 10:56:52

%S -1,13,28,45,63,78,96,111,129,144,164,176,197,210,230,242,265,275,298,

%T 308,331,341,366,373,399,407,432,439,467,472,500,505,533,538,568,570,

%U 601,604,634,636,669,669,702,702,735,735,770,767,803,801

%N Dimension of the space of weight n cuspidal newforms for Gamma_1( 36 ).

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg1new.gp">Dimensions of the spaces S_k^{new}(Gamma_1(N))</a>

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1, 0, 1, 0, 0, 0, -1).

%F From _Colin Barker_, Feb 24 2016: (Start)

%F a(n) = a(n-4) + a(n-6) - a(n-10) for n>13.

%F G.f.: -x^2*(1 -13*x -28*x^2 -45*x^3 -64*x^4 -65*x^5 -69*x^6 -53*x^7 -38*x^8 -21*x^9 -4*x^10) / ((1 -x)^2*(1 +x)^2*(1 -x +x^2)*(1 +x^2)*(1 +x +x^2)).

%F (End)

%K sign,changed

%O 2,2

%A _N. J. A. Sloane_, Jul 14 2001