login
Dimension of the space S_n^{new}(Gamma_1(32)) of weight n cuspidal newforms for Gamma_1( 32 ).
1

%I #25 Feb 17 2025 12:44:22

%S -1,13,31,49,67,85,103,121,139,157,175,193,211,229,247,265,283,301,

%T 319,337,355,373,391,409,427,445,463,481,499,517,535,553,571,589,607,

%U 625,643,661,679,697,715,733,751,769,787,805,823,841,859,877

%N Dimension of the space S_n^{new}(Gamma_1(32)) of weight n cuspidal newforms for Gamma_1( 32 ).

%C Conjecture: a(n) = 18n - 41 for n > 2. - Peter Luschny, Mar 04 2012

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg1new.gp">Dimensions of the spaces S_k^{new}(Gamma_1(N))</a>

%H William A. Stein, <a href="http://wstein.org/Tables/tables.html">The modular forms database</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2, -1).

%F a(n) = 2*a(n-1)-a(n-2) for n>4. G.f.: x^2*(-1+15*x+4*x^2)/(1-x)^2. [_Colin Barker_, Sep 28 2012]

%K sign,changed

%O 2,2

%A _N. J. A. Sloane_, Jul 14 2001