login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063233 Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 79 ). 1
6, 19, 33, 45, 59, 71, 85, 97, 111, 123, 137, 149, 163, 175, 189, 201, 215, 227, 241, 253, 267, 279, 293, 305, 319, 331, 345, 357, 371, 383, 397, 409, 423, 435, 449, 461, 475, 487, 501, 513, 527, 539, 553, 565, 579, 591, 605, 617, 631, 643 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..50.

William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N))

William A. Stein, The modular forms database

Index entries for linear recurrences with constant coefficients, signature (1,1,-1)

FORMULA

a(n) = 13/2 - (1/2)*(-1)^(n-1) + 13*(n-1) - (-1)^n - (binomial(2*(n-1), n-1) mod 2), with n >= 1. - Paolo P. Lava, Nov 27 2009

Except for the first term, a(n) = 26*(n-1) - a(n-1) (with a(2)=19). - Vincenzo Librandi, Dec 07 2010

From M. F. Hasler, Mar 05 2012: (Start)

a(n+2) = a(n) + 26 (n > 1);

a(2n+1) = a(2n) + 14 (n > 0);

a(2n) = a(2n-1) + 12 (n > 1);

a(n) = 13n - { 6 if n = 2k+1, k > 0; 7 otherwise }.

G.f.: x*(6 + 13*x + 8*x^2 - x^3)/(1 - x - x^2 + x^3). (End)

CROSSREFS

Sequence in context: A092098 A186113 A162332 * A063147 A031014 A010899

Adjacent sequences:  A063230 A063231 A063232 * A063234 A063235 A063236

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jul 10 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 06:11 EST 2020. Contains 338781 sequences. (Running on oeis4.)