login
Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 31 ).
1

%I #19 Aug 22 2019 12:18:12

%S 2,7,13,17,23,27,33,37,43,47,53,57,63,67,73,77,83,87,93,97,103,107,

%T 113,117,123,127,133,137,143,147,153,157,163,167,173,177,183,187,193,

%U 197,203,207,213,217,223,227,233,237,243,247

%N Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 31 ).

%C The terms obey a(n)=10*(n-1)-a(n-1), n>2 as far as tabulated, [_Vincenzo Librandi_, Dec 07 2010, corrected by _R. J. Mathar_, Dec 07 2010]

%H William A. Stein, <a href="http://wstein.org/Tables/dimskg0new.gp">Dimensions of the spaces S_k^{new}(Gamma_0(N))</a>

%H William A. Stein, <a href="http://wstein.org/Tables/">The modular forms database</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F From _Colin Barker_, Oct 16 2014: (Start)

%F a(n) = -5/2-(-1)^n/2+5*n for n>1.

%F a(n) = a(n-1)+a(n-2)-a(n-3) for n>4.

%F G.f.: -x*(x^3-4*x^2-5*x-2) / ((x-1)^2*(x+1)).

%F (End)

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jul 10 2001