login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063169 a(n) = n*A001865(n). 5
1, 6, 51, 568, 7845, 129456, 2485567, 54442368, 1339822377, 36602156800, 1099126705611, 35986038303744, 1275815323139149, 48693140873545728, 1990581237014772375, 86778247940387209216, 4018626330009931930833, 197009947951733259436032, 10193206233792610863520867 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Schenker sums without n-th term.

a(n)/n^n = Q(n) (called Ramanujan's function by Knuth).

Urn, n balls, with replacement: how many selections before a ball is chosen that was chosen already? Expected value is a(n)/n^n.

a(n) is the total number of recurrent elements over all endofunctions on n labeled points.  Sum_{k=1..n} A066324(n,k)*k. - Geoffrey Critzer, Dec 05 2011

REFERENCES

D. E. Knuth, The Art of Computer Programming, 3rd ed. 1997, Vol. 1, Addison-Wesley, Reading, MA, 1.2.11.3 p. 116

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..150

Marijke van Gans, Schenker sums

FORMULA

a(n) = Sum_{k=0..n-1} n^k * n!/k!.

a(n)/n! = Sum_{k=0..n-1} n^k/k! (first n terms of e^n power series).

E.g.f.: T/(1-T)^2, where T=T(x) is Euler's tree function (see A000169) - Len Smiley, Nov 28 2001

E.g.f.: -LambertW(-x)/(1+LambertW(-x))^2. - Alois P. Heinz, Nov 16 2011

a(n) = A063170(n) - n^n.

a(n) = Sum_{k=1..n} C(n,k) * (n-k)^(n-k) * k^k. - Paul D. Hanna, Jul 04 2013

a(n) ~ n^(n+1/2)*sqrt(Pi/2). - Vaclav Kotesovec, Oct 05 2013

EXAMPLE

a(4) = (1*2*3*4) + 4*(2*3*4) + 4*4*(3*4) + 4*4*4*(4) = 568.

MATHEMATICA

Flatten[Range[0, 20]! CoefficientList[Series[D[1/(1 - y t), y] /. y -> 1, {x, 0, 20}], {x, y}]]

PROG

(UBASIC)

10 for N=1 to 42 : T=N^N : S=0

20 for K=N to 1 step -1 : T/=N : T*=K : S+=T : next K

30 print N, S : next N

(PARI) a(n)=sum(k=1, n, binomial(n, k)*n^(n-k)*k!) /* Michael Somos, Jun 09 2004 */

(PARI) a(n)=sum(k=1, n, binomial(n, k)*(n-k)^(n-k)*k^k) \\ Paul D. Hanna, Jul 04 2013

CROSSREFS

Cf. A001865, A219706.

Sequence in context: A057817 A000405 A113352 * A246189 A215003 A134525

Adjacent sequences:  A063166 A063167 A063168 * A063170 A063171 A063172

KEYWORD

nonn,easy,nice

AUTHOR

Marijke van Gans (marijke(AT)maxwellian.demon.co.uk)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 08:42 EST 2016. Contains 279044 sequences.