login
A063040
LCM of Stirling numbers of the second kind, S(n,k) for 1 <= k <= n; S(n,k) = number of partitions of {1,2,...,n} with k blocks.
1
1, 1, 3, 42, 150, 36270, 270900, 9440379900, 3332912051700, 2004302168707167000, 1424191116445997823000, 3936008766237071969447818200, 21777085088797129879788000, 3606055788316324023953497288103040, 14285265906831776486190595321261580256175324800
OFFSET
1,3
COMMENTS
This is correct; a(13) < a(12). - Don Reble, Oct 24 2006
LINKS
EXAMPLE
a(4) = lcm(S(4,1), S(4,2), S(4,3), S(4,4)) = lcm(1,7,6,1) = 42.
MAPLE
a:= n-> ilcm(seq(Stirling2(n, k), k=1..n)):
seq(a(n), n=1..15); # Alois P. Heinz, Sep 17 2015
CROSSREFS
Sequence in context: A116006 A079826 A112291 * A365594 A294517 A015786
KEYWORD
nonn
AUTHOR
Leroy Quet, Aug 03 2001
STATUS
approved