This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063020 Reversion of y - y^2 - y^3 + y^4. 3

%I

%S 0,1,1,3,9,32,119,466,1881,7788,32868,140907,611871,2685732,11896906,

%T 53115412,238767737,1079780412,4909067468,22424085244,102865595140,

%U 473678981820,2188774576575,10145798119530,47165267330415,219839845852692,1027183096151244,4810235214490986

%N Reversion of y - y^2 - y^3 + y^4.

%C Seems to be the inverse of A007858. Can someone prove this?

%C a(n+1) counts paths from (0,0) to (n,n) which do not go above the line y=x, using steps (1,0) and (2k,1), where k ranges over the nonnegative integers. For example, the 9 paths from (0,0) to (3,3) are the 5 Catalan paths, as well as DNEN, DENN, EDNN and ENDN. Here E=(1,0), N=(0,1), D=(2,1). - _Brian Drake_, Sep 20 2007

%H Vincenzo Librandi, <a href="/A063020/b063020.txt">Table of n, a(n) for n = 0..200</a>

%H Drake, Brian, <a href="http://dx.doi.org/10.1016/j.disc.2008.11.020">Limits of areas under lattice paths</a>, Discrete Math. 309 (2009), no. 12, 3936-3953.

%H Elżbieta Liszewska, Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019.

%H Hanna Mularczyk, <a href="https://arxiv.org/abs/1908.04025">Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations</a>, arXiv:1908.04025 [math.CO], 2019.

%H <a href="/index/Res#revert">Index entries for reversions of series</a>

%F a(n) = sum(k=0..n-1,(sum(j=0..k, binomial(j,n-3*k+2*j-1)*(-1)^(j-k)*binomial(k,j)))*binomial(n+k-1,n-1))/n. [From _Vladimir Kruchinin,_ Oct 11 2011]

%F a(n) = sum(i=0..n-1, (-1)^(i)*binomial(n+i-1,i)*binomial(3*n-i-2,n-i-1))/n, n>0. - _Vladimir Kruchinin_, Feb 13 2014

%F Recurrence: 16*(n-1)*n*(2*n-1)*(17*n-27)*a(n) = (n-1)*(1819*n^3 - 6527*n^2 + 7350*n - 2520)*a(n-1) + 8*(2*n-3)*(4*n-9)*(4*n-7)*(17*n-10)*a(n-2). - _Vaclav Kotesovec_, Feb 13 2014

%F a(n) ~ sqrt(11-3/sqrt(17))/16 * (107+51*sqrt(17))^n / (sqrt(Pi) * n^(3/2) * 2^(6*n)). - _Vaclav Kotesovec_, Feb 13 2014

%p A:= series(RootOf(_Z-_Z^2-_Z^3+_Z^4-x), x, 21): seq(coeff(A,x,i), i=0..20); # _Brian Drake_, Sep 20 2007

%t CoefficientList[InverseSeries[Series[y - y^2 - y^3 + y^4, {y, 0, 30}], x], x]

%o (Maxima)

%o a(n):=sum((sum(binomial(j,n-3*k+2*j-1)*(-1)^(j-k)*binomial(k,j),j,0,k))*binomial(n+k-1,n-1),k,0,n-1)/n; /* _Vladimir Kruchinin_, Oct 11 2011 */

%o (PARI) x='x+O('x^66); concat([0],Vec(serreverse(x-x^2-x^3+x^4))) \\ _Joerg Arndt_, May 28 2013

%o (Maxima)

%o a(n):=sum((-1)^(i)*binomial(n+i-1,i)*binomial(3*n-i-2,n-i-1),i,0,n-1)/n; /* _Vladimir Kruchinin_, Feb 13 2014 */

%Y Cf. A007848.

%Y Cf. A052709, A064641.

%K nonn,easy

%O 0,4

%A _Olivier Gérard_, Jul 05 2001.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 19:51 EST 2019. Contains 329879 sequences. (Running on oeis4.)