The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062994 Eighth column of triangle A062993 (without leading zeros). A Pfaff-Fuss or 9-Raney sequence. 18
 1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, 3573805950, 70625252863, 1416298046436, 28748759731965, 589546754316126, 12195537924351375, 254184908607118800, 5332692942907262361 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS See Graham et al., Hilton and Pedersen, Hoggat and Bicknell, Frey and Sellers references given in A062993. Essentially the same as A059967. a(n), n>=1, enumerates 9-ary trees (rooted, ordered, incomplete) with n vertices (including the root). These numbers appear in a formula on p. 24 of Gross et al. for b = -2 or 4. For b = -1 or 3, see A002293.- Tom Copeland, Dec 24 2019 REFERENCES G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem. 211, p. 146 with solution on p. 348. LINKS Harry J. Smith, Table of n, a(n) for n = 0..100 M. Gross, P. Hacking, S. Keel, and M. Kontsevich, Canonical bases for cluster algebras, arXiv preprint arXiv:1411.1394 [math.AG], 2016. FORMULA a(n) = A062993(n+7, 7) = binomial(9*n, n)/(8*n+1). G.f.: RootOf((_Z^9)*x-_Z+1) (Maple notation, from ECS, see links for A007556). Recurrence: a(0) = 1; a(n) = Sum_{i1+i2+..+i9=n-1} a(i1)*a(i2)*...*a(i9) for n>=1. - Robert FERREOL, Apr 01 2015 From Ilya Gutkovskiy, Jan 16 2017: (Start) O.g.f.: 8F7(1/9,2/9,1/3,4/9,5/9,2/3,7/9,8/9; 1/4,3/8,1/2,5/8,3/4,7/8,9/8; 387420489*x/16777216). E.g.f.: 8F8(1/9,2/9,1/3,4/9,5/9,2/3,7/9,8/9; 1/4,3/8,1/2,5/8,3/4,7/8,1,9/8; 387420489*x/16777216). a(n) ~ 3^(18*n+1)/(sqrt(Pi)*2^(24*n+5)*n^(3/2)). (End) D-finite with recurrence: 128*n*(8*n-5)*(4*n-1)*(8*n+1)*(2*n-1)*(8*n-1)*(4*n-3)*(8*n-3)*a(n) -81*(9*n-7)*(9*n-5)*(3*n-1)*(9*n-1)*(9*n-8)*(3*n-2)*(9*n-4)*(9*n-2)*a(n-1)=0. - R. J. Mathar, Feb 20 2020 EXAMPLE There are a(2)=9 9-ary trees (vertex degree <=9 and 9 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 9 trees yields 9*9 + binomial(9,2) = 117 = a(3) such trees. MAPLE seq(binomial(9*k+1, k)/(8*k+1), k=0..30); n:=30: G:=series(RootOf(g = 1+x*g^9, g), x=0, n+1): seq(coeff(G, x, k), k=0..n); # Robert FERREOL, Apr 01 2015 MATHEMATICA Table[Binomial[9n, n]/(8n+1), {n, 0, 30}] (* Harvey P. Dale, Oct 28 2012 *) PROG (PARI) { for (n=0, 100, write("b062994.txt", n, " ", binomial(9*n, n)/(8*n + 1)) ) } \\ Harry J. Smith, Aug 15 2009 CROSSREFS Column k=8 of A070914. Cf. A000108, A001764, A002293, A002294, A002295, A002296, A007556, A059968. Sequence in context: A196663 A292843 A180904 * A059967 A304184 A255521 Adjacent sequences:  A062991 A062992 A062993 * A062995 A062996 A062997 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Jul 12 2001 EXTENSIONS 9-ary tree comments and Pólya and G. Szegő reference from Wolfdieter Lang, Sep 14 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 11 04:33 EDT 2020. Contains 335609 sequences. (Running on oeis4.)