The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062964 Pi in hexadecimal. 26
 3, 2, 4, 3, 15, 6, 10, 8, 8, 8, 5, 10, 3, 0, 8, 13, 3, 1, 3, 1, 9, 8, 10, 2, 14, 0, 3, 7, 0, 7, 3, 4, 4, 10, 4, 0, 9, 3, 8, 2, 2, 2, 9, 9, 15, 3, 1, 13, 0, 0, 8, 2, 14, 15, 10, 9, 8, 14, 12, 4, 14, 6, 12, 8, 9, 4, 5, 2, 8, 2, 1, 14, 6, 3, 8, 13, 0, 1, 3, 7, 7, 11, 14, 5, 4, 6, 6, 12, 15, 3, 4, 14, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Bailey and Crandall conjecture that the terms of this sequence, apart from the first, are given by the formula floor(16*(x(n) - floor(x(n)))), where x(n) is determined by the recurrence equation x(n) = 16*x(n-1) + (120*n^2 - 89*n + 16)/(512*n^4 - 1024*n^3 + 712*n^2 - 206*n + 21) with the initial condition x(0) = 0. They have numerically verified the conjecture for the first 100000 terms of the sequence. - Peter Bala, Oct 31 2013 Bailey, Borwein & Plouffe's ("BBP") formula allows one to compute the n-th hexadecimal digit of pi without calculating the preceding digits, cf. Wikipedia link. - M. F. Hasler, Mar 14 2015 REFERENCES S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 17-28. LINKS Harry J. Smith, Table of n, a(n) for n = 1..20000 D. H. Bailey and R. E. Crandall, On the Random Character of Fundamental Constant Expansions, Experiment. Math. Volume 10, Issue 2 (2001), 175-190. CalcCrypto, Pi in Hexadecimal [Broken link] S. R. Finch, The Miraculous Bailey-Borwein-Plouffe Pi Algorithm Steve Pagliarulo, Stu's pi page: base 16 (31 pages of numbers) [Dead link] Johnny Vogler, More digits Wikipedia, Bailey-Borwein-Plouffe formula. FORMULA a(n) = 8*A004601(4n)+4*A004601(4n+1)+2*A004601(4n+2)+1*A004601(4n+3). If Pi is the expansion of Pi in base 10, Pi=3.1415926...: a(n)=floor(16^n*Pi)-16*floor(16^(n-1)*Pi). - Benoit Cloitre, Mar 09 2002 EXAMPLE 3.243f6a8885a308d3... MATHEMATICA RealDigits[ N[ Pi, 115], 16] [[1]] PROG (PARI) { default(realprecision, 24300); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*16; write("b062964.txt", n, " ", d)); } \\ Harry J. Smith, Apr 27 2009 (PARI) N=50; default(realprecision, .75*N); A062964=digits(Pi*16^N\1, 16) \\ M. F. Hasler, Mar 14 2015 CROSSREFS Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), this sequence (b=16), A060707 (b=60). Cf. A007514. Sequence in context: A294209 A066257 A085591 * A010270 A230499 A023630 Adjacent sequences:  A062961 A062962 A062963 * A062965 A062966 A062967 KEYWORD easy,nonn,base,cons AUTHOR Robert Lozyniak (11(AT)onna.com), Jul 22 2001 EXTENSIONS More terms from Henry Bottomley, Jul 24 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 06:40 EDT 2020. Contains 337166 sequences. (Running on oeis4.)