login
A062908
Non-palindromic number and its reversal are both even.
1
20, 24, 26, 28, 40, 42, 46, 48, 60, 62, 64, 68, 80, 82, 84, 86, 200, 204, 206, 208, 210, 214, 216, 218, 220, 224, 226, 228, 230, 234, 236, 238, 240, 244, 246, 248, 250, 254, 256, 258, 260, 264, 266, 268, 270, 274, 276, 278, 280, 284, 286, 288, 290, 294, 296
OFFSET
1,1
EXAMPLE
24 and 42 are both multiples of 2.
MATHEMATICA
Select[Range[2, 296, 2], EvenQ[Last[x=Reverse[y=IntegerDigits[#]]]] && x!=y &] (* Jayanta Basu, May 17 2013 *)
PROG
(ARIBAS): n := 2; stop := 410; m := 0; while m < stop do rev := int_reverse(m); if m <> rev and rev mod n = 0 then write(m, " "); end; inc(m, n); end; .
(PARI) isok(m) = {if (!(m%2), my(r=fromdigits(Vecrev(digits(m)))); if ((r!=m) && !(r%2), print1(m, ", ")); ); } \\ Michel Marcus, Oct 10 2020
CROSSREFS
Cf. A029742 (non-palindromic), A005843 (even numbers).
Sequence in context: A199585 A093716 A117737 * A111323 A250289 A114843
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, Jul 01 2001
EXTENSIONS
More terms from Dean Hickerson, Jul 06, 2001
STATUS
approved