login
A062878
a(n) is the position of A050614(n) in A062877.
4
1, 3, 6, 15, 24, 60, 102, 255, 384, 960, 1632, 4080, 6168, 15420, 26214, 65535, 98304, 245760, 417792, 1044480, 1579008, 3947520, 6710784, 16776960, 25166208, 62915520, 106956384, 267390960, 404232216, 1010580540, 1717986918, 4294967295, 6442450944
OFFSET
0,2
COMMENTS
In binary this sequence looks like 1, 11, 110, 1111, 11000, 111100, 1100110, 11111111, 110000000, 1111000000, 11001100000, 111111110000, 1100000011000, 11110000111100, 110011001100110, ...
Sequence A282387 may be the same, but I cannot prove nor disprove this beyond a(22). - Robert Price, Feb 13 2017
Agrees with A282387 for at least 1000 terms. - Sean A. Irvine, Apr 14 2023
FORMULA
a(2^n-1) = 2^(2^n) - 1. - Philippe Deléham, Apr 05 2007
a(n) = Sum_{k=0..n} A127872(n,k)*2^k. - Philippe Deléham, Oct 09 2007
MATHEMATICA
A050614 = Table[k = Floor[Log[2, n + 1]]; Product[j = 2^(i + 1); l = Fibonacci[j + 1] + Fibonacci[j - 1]; If[BitAnd[2^i, n] == 0, b = 0, b = 1]; l^b, {i, 0, k}], {n, 0, 200}]; A062877 = Union[Total /@ Subsets[Fibonacci[Range[1, 46, 2]]]]; Flatten[Table[Position[ A062877, A050614[[i]] ] - 1, {i, 1, 25}]] (* Robert Price, Feb 13 2017 *)
CROSSREFS
Sequence in context: A272073 A282008 A281212 * A282387 A227960 A282484
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 26 2001
EXTENSIONS
a(15)-a(22) from Robert Price, Feb 13 2017
More terms from Sean A. Irvine, Apr 14 2023
STATUS
approved