This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062861 Numbers which are sums of squares of consecutive numbers (possibly including squares of negative numbers). 8
 0, 1, 2, 4, 5, 6, 9, 10, 13, 14, 15, 16, 19, 25, 28, 29, 30, 31, 35, 36, 41, 44, 49, 50, 54, 55, 56, 60, 61, 64, 69, 77, 81, 85, 86, 90, 91, 92, 96, 100, 105, 110, 113, 121, 126, 135, 139, 140, 141, 144, 145, 146, 149, 154, 169, 170, 174, 181, 182, 190, 194, 195, 196 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 EXAMPLE 13, 14, 15 and 16 are in the sequence since 13 = 2^2 + 3^2, 14 = 1^2 + 2^2 + 3^2, 15 = (-1)^2 + 0^2 + 1^2 + 2^2 + 3^2 and 16 = 4^2. MAPLE filter:= proc(n)   ormap(k -> issqr(-3*k^4+3*k^2+36*k*n) and  ((3*k-3*k^2+sqrt(-3*k^4+3*k^2+36*k*n))/(6*k))::integer,     numtheory:-divisors(6*n)) end proc: filter(0):= true: select(filter, [\$0..200]); # Robert Israel, Jan 22 2017 MATHEMATICA filterQ[n_] := AnyTrue[Divisors[6n], IntegerQ[Sqrt[-3#^4 + 3#^2 + 36#*n]] && IntegerQ[(3# - 3#^2 + Sqrt[-3#^4 + 3#^2 + 36#*n])/(6#)]&]; filterQ[0] = True; Select[Range[0, 200], filterQ] (* Jean-François Alcover, Feb 27 2019, after Robert Israel *) PROG (PARI) { isA062861(t) = fordiv(6*t, k, z=(k^2-1)/3; if(issquare(4*t/k-z), return(k)); if(z>4*t/k, break); ); 0 } \\ Max Alekseyev, Apr 26 2012 CROSSREFS Cf. A034705, A062862, A062863. Sequence in context: A194469 A143072 A089648 * A120629 A169694 A285163 Adjacent sequences:  A062858 A062859 A062860 * A062862 A062863 A062864 KEYWORD nonn AUTHOR Henry Bottomley, Jun 25 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 05:47 EDT 2019. Contains 325213 sequences. (Running on oeis4.)