login
A062841
Palindromes of the form k^3-1.
0
0, 7, 999, 999999, 258474852, 999999999, 999999999999, 999999999999999, 999999999999999999, 999999999999999999999, 999999999999999999999999, 999999999999999999999999999, 999999999999999999999999999999, 999999999999999999999999999999999
OFFSET
1,2
COMMENTS
Sequence is infinite as (10^k)^3-1 is a term for all k >= 0. - Michael S. Branicky, Mar 27 2021
EXAMPLE
999 = 10^3-1 and is a palindrome.
MATHEMATICA
For[n=0, n<100000000, n++, If[n^3-1==IntegerReverse[n^3-1], Print[n^3-1]]] (* Dylan Delgado, Mar 02 2021 *)
Select[Range[10^7]^3-1, PalindromeQ] (* The program generates the first ten terms of the sequence. *) (* Harvey P. Dale, Oct 08 2023 *)
PROG
(Python)
def afind(limit):
for n in range(limit+1):
s = str(n**3 - 1)
if s == s[::-1]: print(int(s), end=", ")
print(afind(10**7)) # Michael S. Branicky, Mar 27 2021
CROSSREFS
Intersection of A002113 and A068601.
Sequence in context: A332197 A213960 A173852 * A349736 A110718 A293142
KEYWORD
base,nonn
AUTHOR
Erich Friedman, Jul 21 2001
EXTENSIONS
One more term from Emeric Deutsch, Feb 26 2005
a(10)-a(14) from Michael S. Branicky, Mar 27 2021
STATUS
approved