

A062831


Number of ways n can be expressed as the sum of a nonzero square and 1 or a prime.


0



0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 0, 2, 3, 2, 1, 2, 0, 3, 2, 0, 2, 1, 1, 4, 2, 1, 2, 2, 1, 2, 2, 1, 3, 2, 1, 2, 2, 2, 2, 3, 1, 3, 2, 0, 2, 2, 0, 4, 2, 0, 3, 3, 2, 4, 2, 1, 2, 3, 1, 1, 3, 1, 4, 2, 1, 3, 1, 2, 5, 3, 0, 3, 3, 2, 2, 2, 0, 4, 2, 1, 3, 2, 1, 4, 1, 1, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


LINKS

Table of n, a(n) for n=1..102.


FORMULA

Note that a(k^2)=0 or 1 since each prime can be written only in one way as a difference of squares: (n+b)^2n^2=p where p is a prime, only if b^2+2nb=b(b+2n) is prime, only if b=1. In that case p=2n+1; since every prime is an odd number we get an 1 in the distribution of a(k^2) for each odd number which is prime.


MATHEMATICA

a[n_] := Length[Select[nRange[1, Floor[Sqrt[n]]]^2, #==1PrimeQ[ # ]&]]


CROSSREFS

Sequence in context: A002217 A157047 A059342 * A037828 A030419 A155052
Adjacent sequences: A062828 A062829 A062830 * A062832 A062833 A062834


KEYWORD

nonn


AUTHOR

Santi Spadaro, Jul 20 2001


EXTENSIONS

Corrected and extended by Dean Hickerson, Jul 26, 2001


STATUS

approved



