login
a(n) = 3*n*(4*n-1).
1

%I #25 Oct 31 2024 20:40:16

%S 0,9,42,99,180,285,414,567,744,945,1170,1419,1692,1989,2310,2655,3024,

%T 3417,3834,4275,4740,5229,5742,6279,6840,7425,8034,8667,9324,10005,

%U 10710,11439,12192,12969,13770,14595,15444,16317,17214,18135,19080

%N a(n) = 3*n*(4*n-1).

%C Write 1, 2, 3, 4, ... counterclockwise in a hexagonal spiral around 0 starting left down, then a(n) is the sequence found by reading from 0 in the vertical downward direction.

%C Polygonal number connection: 2He_n + 7S_n where He_n is the n-th Heptagonal number and S_n is the n-th Square number. - _William A. Tedeschi_, Sep 12 2010

%D L. Berzolari, Allgemeine Theorie der Höeren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906. p. 341.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 24*n + a(n-1) - 15 with n > 0, a(0)=0. - _Vincenzo Librandi_, Aug 07 2010

%F G.f.: 3*x*(3 + 5*x)/(1-x)^3. - _Colin Barker_, Feb 28 2012

%F From _Elmo R. Oliveira_, Oct 31 2024: (Start)

%F E.g.f.: 3*x*(3 + 4*x)*exp(x).

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

%e The spiral begins:

%e ......16..15..14

%e ....17..5...4...13

%e ..18..6...0...3...12

%e 19..7...1...2...11..26

%e ..20..8...9...10..25

%e ....21..22..23..24

%t s=0;lst={s};Do[s+=n++ +9;AppendTo[lst, s], {n, 0, 8!, 24}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 17 2008 *)

%o (PARI) a(n)=3*n*(4*n-1) \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Equals 3*A033991.

%Y Cf. A000567, A063436.

%K easy,nonn

%O 0,2

%A _Floor van Lamoen_, Jul 21 2001