

A062759


Largest power of squarefree kernel of n (= A007947) which divides n. It is a first power if and only if n is not a powerful number (A001694, A052485).


5



1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 6, 13, 14, 15, 16, 17, 6, 19, 10, 21, 22, 23, 6, 25, 26, 27, 14, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 49, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 64, 65, 66, 67, 34, 69, 70, 71, 36, 73
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = A007947(n)^A051904(n).


EXAMPLE

n = 1800: squarefree kernel is 2*3*5 = 30 and a(1800) = 900 = 30^2 divides n, exponent of 30 is the smallest prime exponent of 1800 = 2*2*2*3*3*5*5.


MATHEMATICA

{1}~Join~Table[#^IntegerExponent[n, #] &@ Last@ Select[Divisors@ n, SquareFreeQ], {n, 2, 73}] (* Michael De Vlieger, Nov 02 2017 *)


PROG

(Haskell)
a062759 n = a007947 n ^ a051904 n  Reinhard Zumkeller, Jul 15 2012


CROSSREFS

Cf. A001694, A003557, A007497, A051904, A052485.
Sequence in context: A297239 A043271 A278063 * A327526 A121758 A121759
Adjacent sequences: A062756 A062757 A062758 * A062760 A062761 A062762


KEYWORD

nonn


AUTHOR

Labos Elemer, Jul 16 2001


STATUS

approved



