login
A062671
Every divisor (except 1) contains the digit 5.
18
5, 25, 53, 59, 125, 151, 157, 251, 257, 265, 295, 353, 359, 457, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 625, 653, 659, 751, 755, 757, 785, 853, 857, 859, 953, 1051, 1151, 1153, 1255, 1259, 1285, 1325, 1451, 1453, 1459, 1475, 1511
OFFSET
1,1
LINKS
EXAMPLE
25 has divisors 1, 5 and 25, all of which (except 1) contain the digit 5.
MATHEMATICA
fQ[n_, dgt_] := Union[ MemberQ[#, dgt] & /@ IntegerDigits@ Rest@ Divisors@ n][[1]]; Select[ Range[2, 1500], fQ[#, 5] &] (* Robert G. Wilson v, Jun 11 2014 *)
PROG
(Magma) [k:k in [2..1500]| forall{d:d in Set(Divisors(k)) diff {1}| 5 in Intseq(d)}]; // Marius A. Burtea, Nov 07 2019
(Python)
from sympy import divisors
def ok(n): return all('5' in str(d) for d in divisors(n)[1:])
print(list(filter(ok, range(2, 1512)))) # Michael S. Branicky, May 25 2021
KEYWORD
base,easy,nonn
AUTHOR
Erich Friedman, Jul 04 2001
EXTENSIONS
Offset corrected by Amiram Eldar, Nov 07 2019
STATUS
approved