The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062537 Nodes in riff (rooted index-functional forest) for n. 32
 0, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 3, 4, 4, 4, 5, 5, 5, 4, 5, 4, 5, 4, 5, 5, 6, 5, 4, 6, 5, 6, 5, 5, 5, 6, 6, 5, 6, 5, 6, 6, 5, 6, 5, 4, 5, 6, 6, 4, 5, 7, 6, 6, 6, 5, 7, 5, 6, 6, 4, 7, 7, 5, 6, 6, 7, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 4, 6, 5, 7, 7, 6, 7, 7, 6, 7, 7, 6, 7, 7, 7, 6, 5, 5, 7, 6, 6, 7, 5, 7, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A061396(n) gives number of times n appears in this sequence. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 J. Awbrey, Illustrations of riffs for small integers J. Awbrey, Riffs and Rotes FORMULA a(Prod(p_i^e_i)) = Sum(a(i)+a(e_i)+1), product over nonzero e_i in prime factorization. a(n) = sum(a(A049084(A027748(n,k)))+a(A124010(n,k))+1: k=1..A001221(n)). - Reinhard Zumkeller, Feb 26 2013 MATHEMATICA a[1] = 0; a[n_] := a[n] = Sum[{p, e} = pe; a[PrimePi[p]] + a[e] + 1, {pe, FactorInteger[n]}]; Array[a, 105] (* Jean-François Alcover, Jul 26 2019 *) PROG (Haskell) import Data.Function (on) a062537 1 = 0 a062537 n = sum \$ map (+ 1) \$    zipWith ((+) `on` a062537) (map a049084 \$ a027748_row n) (a124010_row n) -- Reinhard Zumkeller, Feb 26 2013 CROSSREFS Sequence in context: A276621 A111393 A323665 * A279596 A224458 A097688 Adjacent sequences:  A062534 A062535 A062536 * A062538 A062539 A062540 KEYWORD nonn,easy,nice AUTHOR David W. Wilson, Jun 25 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 02:51 EDT 2020. Contains 334747 sequences. (Running on oeis4.)