The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062529 Smallest prime p such that there is a gap of 2^n between p and the next prime. 6
 2, 3, 7, 89, 1831, 5591, 89689, 3851459, 1872851947, 1999066711391, 22790428875364879 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(11) <= 79419801290172271035479303914142441 and  a(12) <= 55128448018333565337014555712123010955456071077000028555991469751. - Abhiram R Devesh, Aug 09 2014 LINKS C. Hilliard, TwinPrimes Java code. Thomas R. Nicely, First occurrence prime gaps. FORMULA a(n) = A000230[2^(n-1)]. - R. J. Mathar, Jan 12 2007 a(n) = A000230[2^(n-1)] = Min{p|nextprime(p)-p = 2^n} [May need adjusting since offset has been changed] EXAMPLE a(2)=7 because 7 and 11 are consecutive primes with difference 2^2=4. a(3)=89 because 89 and 97 are consecutive primes with difference 2^3=8. MATHEMATICA f[n_] := Block[{k = 1}, While[Prime[k + 1] != n + Prime[k], k++ ]; Prime[k]]; Do[ Print[ f[2^n]], {n, 0, 10}] (* Robert G. Wilson v, Jan 13 2005 *) PROG (Python) import sympy n=0 while n>=0: ....p=2 ....while  sympy.nextprime(p)-p!=(2**n): ........p=sympy.nextprime(p) ....print(p) ....n=n+1 ....p=sympy.nextprime(p) ## Abhiram R Devesh, Aug 09 2014 CROSSREFS Cf. A000230, A062530, A101232, A002386. Sequence in context: A053964 A308730 A062578 * A308917 A058443 A163152 Adjacent sequences:  A062526 A062527 A062528 * A062530 A062531 A062532 KEYWORD nonn AUTHOR Labos Elemer, Jun 25 2001 EXTENSIONS a(10) sent by Robert G. Wilson v, Jan 13 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 10:18 EDT 2020. Contains 337317 sequences. (Running on oeis4.)