login
A062459
Primes of form n^2 + mu(n), where mu is A008683.
2
2, 3, 37, 101, 197, 677, 5477, 8837, 17957, 21317, 42437, 44101, 98597, 106277, 148997, 217157, 324901, 401957, 454277, 476101, 509797, 828101, 864901, 933157, 1196837, 1378277, 1664101, 1674437, 1705637, 1833317, 1865957, 1988101
OFFSET
1,1
COMMENTS
All terms except for 3 are of the form n^2 + 1 where mu(n) = 1, since n^2 or n^2-1 can't be prime except for n=2. - Robert Israel, Oct 09 2015
LINKS
MAPLE
R:= select(t -> numtheory:-mobius(t)=1, [$3..10000]):
2, 3, op(select(isprime, map(t-> t^2+1, R))); # Robert Israel, Oct 09 2015
MATHEMATICA
Select[Table[m^2+MoebiusMu[m], {m, 0, 1500}], PrimeQ] (* Harvey P. Dale, Feb 08 2011 *)
PROG
(PARI) j=[]; for(n=1, 3000, x=n^2+moebius(n); if(isprime(x), j=concat(j, x))); j
(PARI) n=0; for (m=1, 10^5, x=m^2 + moebius(m); if (isprime(x), write("b062459.txt", n++, " ", x); if (n==1000, break))) \\ Harry J. Smith, Aug 08 2009
(PARI) list(lim)=my(v=List([2]), t); forstep(n=2, sqrtint(lim\1), 4, if(isprime(t=n^2+moebius(n)), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Sep 22 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Jul 26 2001
STATUS
approved