%I #18 Mar 29 2023 19:01:53
%S 1,10,12,14,15,17,19,31,33,35,36,42,50,52,57,61,63,71,73,77,80,82,84,
%T 98,99,101,117,119,122,124,138,140,143,147,159,166,182,187,189,201,
%U 206,208,210,220,226,229,241,245,254,262,264,273,275,289,290,296,308,311
%N Numbers k such that floor(Pi*k) is prime.
%C Chua, Park, & Smith prove a general result that implies that, for any m, there is a constant C(m) such that a(n+m) - a(n) < C(m) infinitely often. - _Charles R Greathouse IV_, Jun 30 2022
%H Harry J. Smith, <a href="/A062408/b062408.txt">Table of n, a(n) for n = 0..1000</a>
%H Lynn Chua, Soohyun Park, and Geoffrey D. Smith, <a href="https://arxiv.org/abs/1407.1747">Bounded gaps between primes in special sequences</a>, Proceedings of the AMS, Volume 143, Number 11 (November 2015), pp. 4597-4611.
%t Select[Range[1, 400], PrimeQ[Floor[Pi #]] &] (* _Bruno Berselli_, Sep 30 2012 *)
%o (PARI) je=[]; for(n=0,1000, if(isprime(floor(Pi*n)),je=concat(je,n),)); je
%o (PARI) { default(realprecision, 50); n=-1; for (m=1, 10^5, if (isprime(floor(Pi*m)), write("b062408.txt", n++, " ", m); if (n==1000, break)) ) } \\ _Harry J. Smith_, Aug 07 2009
%Y Cf. A022844, A067559.
%K nonn
%O 0,2
%A _Jason Earls_, Jul 08 2001