|
|
A062377
|
|
Euler phi(n) / Carmichael lambda(n) = 10.
|
|
9
|
|
|
275, 341, 451, 550, 671, 682, 775, 781, 902, 1111, 1271, 1342, 1375, 1441, 1550, 1562, 1661, 1775, 1991, 2101, 2201, 2222, 2321, 2542, 2651, 2750, 2761, 2882, 2911, 2981, 3025, 3091, 3131, 3275, 3322, 3421, 3550, 3641, 3751, 3775, 3875, 3982, 4061
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Solutions to A000010(n)/A002322(n)=10.
|
|
LINKS
|
R. J. Mathar, Table of n, a(n) for n = 1..7771
|
|
MATHEMATICA
|
Reap[ For[ n = 1, n <= 4061, n++, If[ EulerPhi[n] / CarmichaelLambda[n] == 10, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Mar 26 2013 *)
|
|
PROG
|
(PARI) {cmf(f)=if( ((f[1]==2)&&(f[2]>2)), eulerphi(f[1]^f[2])/2, eulerphi(f[1]^f[2])) } {cl(f)= k=factor(f); l=1; for(x=1, omega(f), l=lcm(l, cmf([k[x, 1], k[x, 2]]))); l } {A062377(n)=eulerphi(n)/cl(n)} for(x=1, 10001, if(A062377(x)==10, print1(x, ", ")))
|
|
CROSSREFS
|
Cf. A000010, A002322, A034380, A033948, A033948, A062373-A062377.
Sequence in context: A023681 A070272 A066127 * A157489 A144715 A321487
Adjacent sequences: A062374 A062375 A062376 * A062378 A062379 A062380
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Vladeta Jovovic, Jun 17 2001
|
|
EXTENSIONS
|
More terms from Randall L. Rathbun, Jan 12 2002
|
|
STATUS
|
approved
|
|
|
|