Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #47 Oct 27 2023 20:40:49
%S 5,23,41,113,131,311,401,1013,1031,1103,1301,2003,2111,3011,4001,
%T 10103,10211,10301,11003,12011,12101,13001,20021,20201,21011,21101,
%U 30011,100103,101021,101111,102101,103001,120011,121001,200003,200201,201011,201101,202001
%N Primes whose sum of digits is 5.
%H Alois P. Heinz, <a href="/A062341/b062341.txt">Table of n, a(n) for n = 1..14312</a> (first 100 terms from Harvey P. Dale)
%F Intersection of A000040 (primes) with A052219 (digit sum 5). - _M. F. Hasler_, Mar 09 2022
%e 1301 belongs to the sequence since it is a prime with sum of digits = 5.
%p T:= n-> `if`(n=1, 5, sort(select(isprime, [seq(seq(seq(
%p 10^(n-1)+1+10^i+10^j+10^k, k=1..j), j=1..i), i=1..n-1),
%p seq(10^(n-1)+3+10^i, i=1..n-1)]))[]):
%p seq(T(n), n=1..8); # _Alois P. Heinz_, Dec 28 2015
%t Select[Prime[Range[20000]],Total[IntegerDigits[#]]==5&] (* _Harvey P. Dale_, Nov 24 2013 *)
%o (Magma) [p: p in PrimesUpTo(250000) | &+Intseq(p) eq 5]; // _Vincenzo Librandi_, Jul 08 2014
%o (Python)
%o from sympy import primerange as primes
%o def ok(p): return sum(map(int, str(p))) == 5
%o print(list(filter(ok, primes(1, 202002)))) # _Michael S. Branicky_, May 23 2021
%o (PARI)
%o \\ From _M. F. Hasler_, Mar 09 2022: (Start)
%o select( {is_A062341(p,s=5)=sumdigits(p)==s&&isprime(p)}, primes([1,10^6])) \\ 2nd optional parameter for similar sequences with other digit sums.
%o A062341_upto_length(L,s=5,a=List(),u=[10^k|k<-[0..L-1]])={forvec(d=[[1,L]|i<-[1..s]], isprime(p=vecsum(vecextract(u,d))) && listput(a,p),1); Set(a)} \\ (End)
%Y Cf. A000040 (primes), A007953 (sum of digits), A052219 (digit sum = 5).
%Y Cf. A062339 (same for digit sum s = 4), A062337 (s = 7), and others listed in A244918 (s = 68).
%Y Subsequence of A062340 (primes with sum of digits divisible by 5).
%K nonn,base,easy
%O 1,1
%A _Amarnath Murthy_, Jun 21 2001
%E Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001