login
A062326
Primes p such that p^2 - 2 is also prime.
43
2, 3, 5, 7, 13, 19, 29, 37, 43, 47, 61, 71, 89, 103, 107, 127, 131, 139, 173, 191, 211, 223, 233, 239, 257, 293, 313, 337, 359, 421, 443, 449, 467, 491, 523, 541, 569, 587, 607, 653, 677, 719, 727, 733, 743, 751, 757, 761, 797, 811, 863, 881, 1013, 1021
OFFSET
1,1
COMMENTS
When p and p^2 - 2 are both prime, the fundamental solution of the Pell equation x^2 - n*y^2 = 1, for n = p^2 - 2, is x = p^2 - 1 and y = p. See A109748 for the case of n and x both prime. - T. D. Noe, May 19 2007
3 is the only prime p such that p^2 + 2 and p^2 - 2 are both primes. - Jaroslav Krizek, Nov 25 2013 (note that p^2 + 2 is composite for all primes p >= 5. - Joerg Arndt, Jan 10 2015)
For all primes p except for p = 3, p^2 + 2 is multiple of 3 (see A061725). - Zak Seidov, Feb 19 2015
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
MATHEMATICA
Select[Prime[Range[500]], PrimeQ[#^2 - 2] &] (* Harvey P. Dale, Sep 20 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(1100) | IsPrime(p^2-2) ]; // Klaus Brockhaus, Jan 01 2009
(PARI) { n=0; forprime (p=2, 5*10^5, if (isprime(p^2 - 2), write("b062326.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 05 2009
(Haskell)
import Data.List (elemIndices)
a062326 = a000040 . a137291
a062326_list = map (a000040 . (+ 1)) $
elemIndices 1 $ map a010051' a049001_list
-- Reinhard Zumkeller, Jul 30 2015
CROSSREFS
Cf. A049002 (p^2-2).
Sequence in context: A147791 A169647 A072467 * A198273 A066076 A136288
KEYWORD
nonn,nice
AUTHOR
Reiner Martin, Jul 12 2001
STATUS
approved