login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062324 p and p^2 + 4 are both prime. 22
3, 5, 7, 13, 17, 37, 47, 67, 73, 97, 103, 137, 163, 167, 193, 233, 277, 293, 307, 313, 317, 347, 373, 463, 487, 503, 547, 577, 593, 607, 613, 677, 743, 787, 823, 827, 853, 883, 953, 967, 983, 997, 1087, 1117, 1123, 1237, 1367, 1423, 1447, 1523, 1543, 1613 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Solutions of the equation n' + (n^2+4)' = 2, where n' is the arithmetic derivative of n. [Paolo P. Lava, Nov 09 2012]

Equivalent to the definition: largest absolute dimension of Gaussian primes with prime coordinates. As 2 is the only even prime, the only possibility for a Gaussian prime to have prime coordinates is to be of the form +/-2 +/- I*p or +/-p +/-2*I with p^2+4 a prime, i.e., p is a member of this sequence. - Olivier Gérard, Aug 17 2013

When p > 3, p^2 + 2 is never prime. - Zak Seidov, Nov 04 2013

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = sqrt(A045637(n) - 4). - Zak Seidov, Nov 04 2013

EXAMPLE

a(1) = 3 because 3^2 + 4 = 13 is prime,

a(4) = 13 because 13^2 + 4 = 173 is prime. - Zak Seidov, Nov 04 2013

MATHEMATICA

Select[Prime/@Range[300], PrimeQ[ #^2+4]&]

PROG

(PARI) { n=0; forprime (p=2, 5*10^5, if (isprime(p^2 + 4), write("b062324.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 04 2009

CROSSREFS

The corresponding primes p^2+4 are in A045637.

Subsequence of A176983.

Sequence in context: A003424 A073638 A066464 * A194829 A226794 A173641

Adjacent sequences:  A062321 A062322 A062323 * A062325 A062326 A062327

KEYWORD

nonn,easy

AUTHOR

Reiner Martin (reinermartin(AT)hotmail.com), Jul 12 2001

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Jul 20 2001

Edited by Dean Hickerson, Dec 10 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 20 10:23 EST 2018. Contains 297960 sequences.