login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062296 a(n) = number of entries in n-th row of Pascal's triangle divisible by 3. 10
0, 0, 0, 2, 1, 0, 4, 2, 0, 8, 7, 6, 9, 6, 3, 10, 5, 0, 16, 14, 12, 16, 11, 6, 16, 8, 0, 26, 25, 24, 27, 24, 21, 28, 23, 18, 33, 30, 27, 32, 25, 18, 31, 20, 9, 40, 35, 30, 37, 26, 15, 34, 17, 0, 52, 50, 48, 52, 47, 42, 52, 44, 36, 58, 53, 48, 55, 44, 33, 52, 35, 18, 64, 56, 48, 58, 41 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

a(n) = n + 1 - A206424(n) - A227428(n); number of zeros in row n of triangle A083093. - Reinhard Zumkeller, Jul 11 2013

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

FORMULA

a(n) + A006047(n) = n + 1 so a(n) = n + 1 - A006047(n).

EXAMPLE

When n=3 the row is 1,3,3,1 so a(3) = 2.

MAPLE

p:=proc(n) local ct, k: ct:=0: for k from 0 to n do if binomial(n, k) mod 3 = 0 then else ct:=ct+1 fi od: end: seq(n+1-p(n), n=0..83); # Emeric Deutsch

MATHEMATICA

a[n_] := Count[(Binomial[n, #] & )[Range[0, n]], _?(Divisible[#, 3] & )];

Table[a[n], {n, 0, 100}] (* Jean-Fran├žois Alcover, Jan 26 2018 *)

PROG

(Haskell)

a062296 = sum . map ((1 -) . signum) . a083093_row

-- Reinhard Zumkeller, Jul 11 2013

CROSSREFS

Cf. A006047.

Sequence in context: A122792 A138002 A261877 * A249343 A140649 A290222

Adjacent sequences:  A062293 A062294 A062295 * A062297 A062298 A062299

KEYWORD

nonn,look

AUTHOR

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 02 2001

EXTENSIONS

More terms from Emeric Deutsch, Feb 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 17:15 EST 2020. Contains 332100 sequences. (Running on oeis4.)