login
Sixth (unsigned) column of triangle A062140 (generalized a=4 Laguerre).
2

%I #21 Aug 09 2022 02:29:16

%S 1,60,2310,73920,2162160,60540480,1664863200,45664819200,

%T 1261490630400,35321737651200,1006669523059200,29284931579904000,

%U 871226714502144000,26538906072526848000,828392996692445184000

%N Sixth (unsigned) column of triangle A062140 (generalized a=4 Laguerre).

%H Harry J. Smith, <a href="/A062263/b062263.txt">Table of n, a(n) for n = 0..100</a>

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F E.g.f.: N(4;5, x)/(1-x)^15, with N(4;5, x) := Sum_{k=0..5} A062264(5, k)* x^k = 1 + 45*x + 360*x^2 + 840*x^3 + 630*x^4 + 226*x^5.

%F a(n) = A062140(n+5, 5).

%F a(n) = (n+5)!*binomial(n+9, 9)/5!.

%F If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-9) = (-1)^(n-1)*f(n,9,-6), (n>=9). - _Milan Janjic_, Mar 01 2009

%t Table[(n+5)!*Binomial[n+9,9]/5!, {n, 0, 20}] (* _G. c. Greubel_, May 12 2018 *)

%o (PARI) { f=24; for (n=0, 100, f*=n + 5; write("b062263.txt", n, " ", f*binomial(n + 9, 9)/120) ) } \\ _Harry J. Smith_, Aug 03 2009

%o (Magma) [Factorial(n+5)*Binomial(n+9, 9)/Factorial(5): n in [0..20]]; // _G. C. Greubel_, May 12 2018

%Y Cf. A001720, A062140, A062199, A062260, A062261, A062262.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Jun 19 2001