The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062236 Sum of the levels of all nodes in all noncrossing trees with n edges. 1
 1, 8, 58, 408, 2831, 19496, 133638, 913200, 6226591, 42387168, 288194424, 1957583712, 13286865060, 90126841064, 611029568078, 4140789069408, 28050809681679, 189964288098632, 1286119453570746, 8705397371980728 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Harry J. Smith, Table of n, a(n) for n=1..200 E. Deutsch and M. Noy, New statistics on non-crossing trees, in: Formal Power Series and Algebraic Combinatorics (Proceedings of the 12th International Conference, FPSAC'00, Moscow, Russia, 2000), pp. 667-676, Springer, Berlin, 2000. E. Deutsch and M. Noy, Statistics on non-crossing trees, Discrete Math., 254 (2002), 75-87 (see Th. 6). [From N. J. A. Sloane, Dec 17 2012] P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999. M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998. FORMULA G.f.: g*(g-1)/(3-2*g)^2, where g=1+z^3g, g(0)=0 or g := 2*sin(arcsin(3*sqrt(3*z)/2)/3)/sqrt(3*z); Recurrence: 8*n*(2*n-1)*a(n) = 6*(36*n^2-45*n+10)*a(n-1) - 81*(3*n-5)*(3*n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012 a(n) ~ 3^(3*n)/2^(2*n+2). - Vaclav Kotesovec, Oct 13 2012 a(n) = Sum_{i=0..n-1} C(3*i-1,i)*C(3*(n-i),n-i-1). - Vladimir Kruchinin, Jun 09 2020 MAPLE a := n->sum(2^(n-2-i)*(n-i)*(3*n-3*i-1)*binomial(3*n, i), i=0..n-1)/n; MATHEMATICA Table[Sum[2^(n-2-k)*(n-k)*(3*n-3*k-1)*Binomial[3*n, k], {k, 0, n-1}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Oct 13 2012 *) PROG (PARI) { for (n=1, 200, a=sum(i=0, n-1, 2^(n-2-i)*(n-i)*(3*n-3*i-1)*binomial(3*n, i))/n; write("b062236.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 03 2009 CROSSREFS Cf. A001764. Sequence in context: A162272 A273584 A037532 * A178730 A190978 A254663 Adjacent sequences:  A062233 A062234 A062235 * A062237 A062238 A062239 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 30 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 20:53 EST 2020. Contains 338627 sequences. (Running on oeis4.)