This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062162 Boustrophedon transform of (-1)^n. 8
 1, 0, 0, 1, 0, 5, 10, 61, 280, 1665, 10470, 73621, 561660, 4650425, 41441530, 395757181, 4031082640, 43626778785, 499925138190, 6046986040741, 76992601769220, 1029315335116745, 14416214547400450, 211085887742964301, 3225154787165157400, 51329932704636904305 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Inverse binomial transform of Euler numbers A000111. - Paul Barry, Jan 21 2005 a(n) = abs(sum of row n in A247453). - Reinhard Zumkeller, Sep 17 2014 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 Peter Luschny, An old operation on sequences: the Seidel transform FORMULA E.g.f.: exp(-x)*(tan(x) + sec(x)). - Vladeta Jovovic, Feb 11 2003 a(n) ~ 4*(2*n/Pi)^(n+1/2)/exp(n+Pi/2). - Vaclav Kotesovec, Oct 05 2013 G.f.: E(0)*x/(1+x) + 1/(1+x), where E(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(x*k-1)*(x*(k+1)-1)/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 16 2014 MATHEMATICA CoefficientList[Series[E^(-x)*(Tan[x]+1/Cos[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *) t[n_, 0] := (-1)^n; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, n-k]; a[n_] := t[n, n]; Array[a, 30, 0] (* Jean-François Alcover, Feb 12 2016 *) PROG (Sage) # Generalized algorithm of L. Seidel (1877) def A062162_list(n) :     R = []; A = {-1:0, 0:0}     k = 0; e = 1     for i in range(n) :         Am = (-1)^i         A[k + e] = 0         e = -e         for j in (0..i) :             Am += A[k]             A[k] = Am             k += e         R.append(A[e*i//2])     return R A062162_list(22) # Peter Luschny, Jun 02 2012 (Haskell) a062162 = abs . sum . a247453_row -- Reinhard Zumkeller, Sep 17 2014 CROSSREFS Cf. A000111 (binomial transform). Cf. A000667. Cf. A247453. Sequence in context: A072309 A240647 A061518 * A062848 A054884 A218540 Adjacent sequences:  A062159 A062160 A062161 * A062163 A062164 A062165 KEYWORD nonn,easy AUTHOR Frank Ellermann, Jun 10 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 20:53 EST 2018. Contains 317278 sequences. (Running on oeis4.)