login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062125 Fifth column of A046741. 0
5, 56, 263, 815, 1982, 4115, 7646, 13088, 21035, 32162, 47225, 67061, 92588, 124805, 164792, 213710, 272801, 343388, 426875, 524747, 638570, 769991, 920738, 1092620, 1287527, 1507430, 1754381, 2030513, 2338040, 2679257, 3056540 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).

LINKS

Table of n, a(n) for n=0..30.

FORMULA

G.f.: (5+33*x^2+10*x^3+31*x+2*x^4)/(1-x)^5. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).

a(0)=5, a(1)=56, a(2)=263, a(3)=815, a(4)=1982, a(n)=5*a(n-1)- 10*a(n-2)+ 10*a(n-3)-5*a(n-4)+a(n-5) [From Harvey P. Dale, Dec 21 2011]

MATHEMATICA

LinearRecurrence[{5, -10, 10, -5, 1}, {5, 56, 263, 815, 1982}, 31] (* or *) CoefficientList[Series[(5+33x^2+10x^3+31x+2x^4)/(1-x)^5, {x, 0, 30}], x] (* Harvey P. Dale, Dec 21 2011 *)

CROSSREFS

Cf. dumbbells: A002940, A002941, A002889, A046741, A055608, A062123-A062127.

Sequence in context: A072318 A174514 A041995 * A030060 A247710 A247774

Adjacent sequences:  A062122 A062123 A062124 * A062126 A062127 A062128

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Jun 04 2001

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 13:53 EST 2014. Contains 252266 sequences.