%I #16 Feb 17 2021 16:20:34
%S 0,1,2,5,19,65,259,1161,5927,33946,216090,1513051,11558614,95658445,
%T 852571616,8141450460,82928132445,897492637757,10284508144797,
%U 124399102620413,1583898570128385,21175164077080102,296571619014584968,4342477201229994035,66348164337987642924
%N Boustrophedon transform of 0, 1, 0, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,... the Fibonacci numbers (F_0 = 0, F_1 = 1, A000045) with an erroneous term (F_2 = 0 instead of 1).
%H C. A. Church and M. Bicknell, <a href="https://www.mathstat.dal.ca/FQ/Scanned/11-3/church.pdf">Exponential generating functions for Fibonacci identities</a>, Fibonacci Quarterly, 11(3) (1973), 275-281.
%H J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996), 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.
%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%F E.g.f.: (sec(x) + tan(x))*((exp(a*x) - exp(b*x))/(a-b) - x^2/2), where a = (1 + sqrt(5))/2 and b = (1 - sqrt(5))/2. - _Petros Hadjicostas_, Feb 16 2021
%p read transforms; with(combinat, fibonacci): a := [0,1,0,seq(fibonacci(i),i=3..30)]: BOUS2(a);
%K nonn
%O 0,3
%A Orleo Marinaro (KDNM21(AT)bipop.it), Jun 01 2001
%E Mar 31 2004: Thomas Sundquist noticed the original description was incorrect. Francisco Salinas was able to modify the description so as to produce the given sequence.