login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062113 a(0)=1; a(1)=2; a(n) = a(n-1) + a(n-2)*(3 - (-1)^n)/2. 2
1, 2, 3, 7, 10, 24, 34, 82, 116, 280, 396, 956, 1352, 3264, 4616, 11144, 15760, 38048, 53808, 129904, 183712, 443520, 627232, 1514272, 2141504, 5170048, 7311552, 17651648, 24963200, 60266496, 85229696, 205762688, 290992384, 702517760 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

A bistable recurrence.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (0,4,0,-2).

FORMULA

a(n) = a(n-1) + a(n-2) * A000034(n). - Reinhard Zumkeller, Jan 21 2012

From Colin Barker, Apr 20 2012: (Start)

a(n) = 4*a(n-2) - 2*a(n-4).

G.f.: (1+2*x-x^2-x^3)/(1-4*x^2+2*x^4). (End)

MATHEMATICA

LinearRecurrence[{0, 4, 0, -2}, {1, 2, 3, 7}, 40] (* G. C. Greubel, Oct 16 2018 *)

PROG

(PARI) { for (n=0, 200, if (n>1, a=a1 + a2*(3 - (-1)^n)/2; a2=a1; a1=a, if (n==0, a=a2=1, a=a1=2)); write("b062113.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 01 2009

(PARI) x='x+O('x^40); Vec((1+2*x-x^2-x^3)/(1-4*x^2+2*x^4)) \\ G. C. Greubel, Oct 16 2018

(Haskell)

a062113 n = a062113_list !! n

a062113_list = 1 : 2 : zipWith (+)

   (tail a062113_list) (zipWith (*) a000034_list a062113_list)

-- Reinhard Zumkeller, Jan 21 2012

(MAGMA) I:=[1, 2, 3, 7]; [n le 4 select I[n] else 4*Self(n-2) - 2*Self(n-4): n in [1..40]]; // G. C. Greubel, Oct 16 2018

CROSSREFS

Cf. A007068, A062112.

Sequence in context: A318406 A079380 A263402 * A130968 A007748 A126617

Adjacent sequences:  A062110 A062111 A062112 * A062114 A062115 A062116

KEYWORD

easy,nonn

AUTHOR

Olivier Gérard, Jun 05 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 23:03 EDT 2021. Contains 343071 sequences. (Running on oeis4.)