login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062092 a(n) = 2*a(n-1)-(-1)^n for n>0, a(0)=2. 9
2, 5, 9, 19, 37, 75, 149, 299, 597, 1195, 2389, 4779, 9557, 19115, 38229, 76459, 152917, 305835, 611669, 1223339, 2446677, 4893355, 9786709, 19573419, 39146837, 78293675, 156587349, 313174699, 626349397, 1252698795, 2505397589 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=charpoly(A,3). [From Milan Janjic, Jan 24 2010]

REFERENCES

T. Koshy, Fibonacci and Lucas numbers with applications, Wiley, 2001, p. 98.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (1,2).

FORMULA

a(n) = a(n-1)+2*a(n-2) = (7*2^n-(-1)^n)/3.

G.f.: (2+3*x)/(1-x-2*x^2).

E.g.f.: (7*exp(2*x)-exp(-x))/3.

Running sum of 3 consecutive elements of Jacobsthal sequence A001045(n): a(n) = A001045(n) + A001045(n-1) + A001045(n-2). - Alexander Adamchuk, May 16 2006

EXAMPLE

a(4) = 37 hence a(5) = 2*37 + 1=75 and a(6) = 2*75 - 1 = 149.

MATHEMATICA

f1[n_]:=2*n+1; f2[n_]:=2*n-1; a=2; lst={a}; Do[AppendTo[lst, a=f1[a]]; AppendTo[lst, a=f2[a]], {n, 30}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)

PROG

(PARI) { for (n=0, 200, write("b062092.txt", n, " ", (7*2^n - (-1)^n)/3) ) } [Harry J. Smith, Aug 01 2009]

CROSSREFS

Cf. A062092(n)=2^(n+1)+A001045(n). A002487(A062092(n))=A000032(n+1).

Cf. A001045.

Sequence in context: A122893 A178841 A214319 * A320172 A079117 A030137

Adjacent sequences:  A062089 A062090 A062091 * A062093 A062094 A062095

KEYWORD

nonn,easy

AUTHOR

Amarnath Murthy, Jun 16 2001

EXTENSIONS

More terms from Jason Earls, Jun 18 2001

Additional comments from Michael Somos, Jun 24 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 06:06 EST 2019. Contains 329217 sequences. (Running on oeis4.)