login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062054 Numbers with 4 odd integers in their Collatz (or 3x+1) trajectory. 4
17, 34, 35, 68, 69, 70, 75, 136, 138, 140, 141, 150, 151, 272, 276, 277, 280, 282, 300, 301, 302, 544, 552, 554, 560, 564, 565, 600, 602, 604, 605, 1088, 1104, 1108, 1109, 1120, 1128, 1130, 1137, 1200, 1204, 1205, 1208, 1210, 2176, 2208, 2216, 2218, 2240 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The Collatz (or 3x+1) function is f(x) = x/2 if x is even, 3x+1 if x is odd.

The Collatz trajectory of n is obtained by applying f repeatedly to n until 1 is reached.

A078719(a(n)) = 4; A006667(a(n)) = 3.

Numbers m such that (s0 - 4s1)/2m = 1 where s0 is the sum of the even elements and s1 the sum of the odd elements in the Collatz trajectory of m. - Michel Lagneau, Aug 13 2018

If m is in the sequence then so is 2*m, so one would only have to check odd numbers. - David A. Corneth, Aug 13 2018

REFERENCES

J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.

LINKS

David A. Corneth, Table of n, a(n) for n = 1..15549 (first 750 terms from Reinhard Zumkeller, terms < 10^15)

J. R. Goodwin, Results on the Collatz Conjecture, Sci. Ann. Comput. Sci. 13 (2003) pp. 1-16.

J. Shallit and D. Wilson, The "3x+1" Problem and Finite Automata, Bulletin of the EATCS #46 (1992) pp. 182-185.

Eric Weisstein's World of Mathematics, Collatz Problem

Wikipedia, Collatz conjecture

Index entries for sequences related to 3x+1 (or Collatz) problem

Index entries for 2-automatic sequences.

FORMULA

The twelve formulas giving this sequence are listed in Corollary 3.3 in J. R. Goodwin with the following caveats: the value x cannot equal zero in formulas (3.16) and (3.20), one must multiply the formulas by all powers of 2 (2^1, 2^2, ...) to get the evens. - Jeffrey R. Goodwin, Oct 26 2011

EXAMPLE

The Collatz trajectory of 17 is (17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1), which contains 4 odd integers. - Jeffrey R. Goodwin, Oct 26 2011

MATHEMATICA

col4Q[n_]:=Module[{c=NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #!=1&]}, Count[c, _?OddQ]==4]; Select[Range[2500], col4Q]  (* Harvey P. Dale, Mar 21 2011 *)

PROG

(Haskell)

import Data.List (elemIndices)

a062054 n = a062054_list !! (n-1)

a062054_list = map (+ 1) $ elemIndices 4 a078719_list

-- Reinhard Zumkeller, Oct 08 2011

CROSSREFS

Cf. A000079, A006370, A062052, A062053, A062055, A062056, A062057, A062058, A062059, A062060, A092893, A198587.

Sequence in context: A168579 A135637 A040272 * A164008 A013577 A234942

Adjacent sequences:  A062051 A062052 A062053 * A062055 A062056 A062057

KEYWORD

nonn,easy

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 08:56 EST 2018. Contains 317268 sequences. (Running on oeis4.)