login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061995 Number of ways to place 2 nonattacking kings on an n X n board. 20
0, 0, 0, 16, 78, 228, 520, 1020, 1806, 2968, 4608, 6840, 9790, 13596, 18408, 24388, 31710, 40560, 51136, 63648, 78318, 95380, 115080, 137676, 163438, 192648, 225600, 262600, 303966, 350028, 401128, 457620, 519870, 588256 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes, part of V. Kotesovec, Between chessboard and computer, 1996, pp. 204 - 206.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1)

FORMULA

G.f.: 2*x^3*(x^2 + x - 8)/(x - 1)^5.

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n >= 6.

a(n) = (n - 1)*(n - 2)*(n^2 + 3*n - 2)/2, n >= 1.

E.g.f.: (4 - (4 - 4*x + 2*x^2 - 6*x^3 - x^4)*exp(x))/2. - G. C. Greubel, Nov 04 2018

MATHEMATICA

CoefficientList[Series[2 x^3 (-8 + x + x^2) / (x-1)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 02 2013 *)

PROG

(PARI) x='x+O('x^30); Vec(2*x^3*(x^2+x-8)/(x-1)^5) \\ G. C. Greubel, Nov 04 2018

(MAGMA) [0] cat [(n-1)*(n-2)*(n^2+3*n-2)/2: n in [1..30]]; // G. C. Greubel, Nov 04 2018

CROSSREFS

Cf. A061996, A061997, A061998.

Sequence in context: A195976 A302412 A303179 * A212563 A210324 A250231

Adjacent sequences:  A061992 A061993 A061994 * A061996 A061997 A061998

KEYWORD

nonn,easy

AUTHOR

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 18 20:06 EST 2018. Contains 318245 sequences. (Running on oeis4.)