login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061994 Number of ways to place 4 nonattacking queens on an n X n board. 16

%I

%S 0,0,0,0,2,82,982,7002,34568,131248,412596,1123832,2739386,6106214,

%T 12654614,24675650,45704724,80999104,138170148,227938788,365106738,

%U 569681574,868289594,1295775946,1897176508,2729909796

%N Number of ways to place 4 nonattacking queens on an n X n board.

%C An analytical solution for the 4-queens problem permits us to combine six particular cases into a single "unified" expression: a(n) = n(n-1)(45n^6 - 855n^5 + 6945n^4 - 30891n^3 + 78864n^2 - 106226n + 53404)/1080 + (n^3 - 21/2n^2 + 28n - 14)*floor(n/2) + 32/9(n-1)*floor(n/3) + (16/9n-4)*floor((n+1)/3). The method used to derive this formula helps to fine-tune an estimate by E. Lucas for a(n) (see comment to A047659 "3-queens problem"). For any fixed value of k > 1, a(n) = n^(2k)/k! - 5/3n^(2k-1)/(k-2)! + O(n^(2k-2)). - _Sergey Perepechko_, Sep 16 2005

%D Vaclav Kotesovec, Between chessboard and computer, 1996, pp. 204-206.

%H Vincenzo Librandi, <a href="/A061994/b061994.txt">Table of n, a(n) for n = 0..1000</a>

%H Louis Azemard, <a href="http://problem64.beda.cz/silo/azemard_vk_rm1992.pdf">Une communication de Vaclav Kotesovec</a>, Echecs et Mathématiques, Rex Multiplex 38/1992.

%H Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013, p. 12.

%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (3, 1, -9, 0, 12, 7, -15, -16, 16, 15, -7, -12, 0, 9, -1, -3, 1).

%F G.f.: - (574*x^16 + 3804*x^15 + 13522*x^14 + 29768*x^13 + 2*x^4 + 46890*x^12 + 76*x^5 + 53580*x^11 + 734*x^6 + 46304*x^10 + 3992*x^7 + 29356*x^9 + 13318*x^8)/( - 1 + x^17 - 3*x^16 - x^15 + 9*x^14 - 12*x^12 - 7*x^11 + 15*x^10 + 16*x^9 - 16*x^8 - 15*x^7 + 7*x^6 + 12*x^5 - 9*x^3 + x^2 + 3*x).

%F Recurrence: a(n) = 3*a(n - 1) + a(n - 2) - 9*a(n - 3) + 12*a(n - 5) + 7*a(n - 6) - 15*a(n - 7) - 16*a(n - 8) + 16*a(n - 9) + 15*a(n - 10) - 7*a(n - 11) - 12*a(n - 12) + 9*a(n - 14) - a(n - 15) - 3*a(n - 16) + a(n - 17), n >= 17.

%F Explicit formula (V. Kotesovec, 1992) for n >= 2: a(n) = n^8/24 - 5*n^7/6 + 65*n^6/9 - 1051*n^5/30 + 817*n^4/8 added to one of the following terms:

%F - 4769*n^3/27 + 1963*n^2/12 - 1769*n/30 if n = 0 (mod 6)

%F - 9565*n^3/54 + 1013*n^2/6 - 6727*n/90 + 257/27 if n = 1 (mod 6)

%F - 4769*n^3/27 + 1963*n^2/12 - 5467*n/90 + 28/27 if n = 2 (mod 6)

%F - 9565*n^3/54 + 1013*n^2/6 - 2189*n/30 + 7 if n = 3 (mod 6)

%F - 4769*n^3/27 + 1963*n^2/12 - 5467*n/90 + 68/27 if n = 4 (mod 6)

%F - 9565*n^3/54 + 1013*n^2/6 - 6727*n/90 + 217/27 if n = 5 (mod 6).

%F a(n) = n^8/24 - 5n^7/6 + 65n^6/9 - 1051n^5/30 + 817n^4/8 - 19103n^3/108 + 3989n^2/24 - 18131n/270 + 253/54 + (n^3/4 - 21n^2/8 + 7n - 7/2)*(-1)^n + 32*(n - 1)/27*cos(2*Pi*n/3) + 40/81*sqrt(3)*sin(2*Pi*n/3). - _Vaclav Kotesovec_, Feb 11 2010

%F E.g.f.: (3*(exp(2*x)*(5060 - 4645*x + 1755*x^2 - 590*x^3 + 480*x^4 + 414*x^5 + 870*x^6 + 360*x^7 + 45*x^8) - 135*(28 + 37*x + 15*x^2 + 2*x^3)) - 1920 * exp(x/2) * (2+x) * cos(sqrt(3)*x/2) - 320 * sqrt(3) * exp(x/2) * (6*x-5) * sin(sqrt(3)*x/2)) / (3240 * exp(x)). - _Vaclav Kotesovec_, Feb 15 2015

%t CoefficientList[Series[-(574 x^16 + 3804 x^15 + 13522 x^14 + 29768 x^13 + 2 x^4 + 46890 x^12 + 76 x^5 + 53580 x^11 + 734 x^6 + 46304 x^10 + 3992 x^7 + 29356 x^9 + 13318 x^8) / (-1 + x^17 - 3 x^16 - x^15 + 9 x^14 - 12 x^12 - 7 x^11 + 15 x^10 + 16 x^9 - 16 x^8 - 15 x^7 + 7 x^6 + 12 x^5 - 9 x^3 + x^2 + 3 x), {x, 0, 40}], x] (* _Vincenzo Librandi_, May 12 2013 *)

%t LinearRecurrence[{3,1,-9,0,12,7,-15,-16,16,15,-7,-12,0,9,-1,-3,1},{0,0,0,0,2,82,982,7002,34568,131248,412596,1123832,2739386,6106214,12654614,24675650,45704724},40] (* _Harvey P. Dale_, Jan 21 2017 *)

%Y Cf. A036464, A047659.

%K nonn,nice,easy

%O 0,5

%A Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 31 2001

%E Minor edits by _Vaclav Kotesovec_, Feb 15 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 09:29 EST 2019. Contains 329054 sequences. (Running on oeis4.)