

A061915


Obtain m by omitting trailing zeros from n; a(n) = smallest multiple k*m which is a palindrome with even digits, or 1 if no such multiple exists.


3



0, 2, 2, 6, 4, 1, 6, 686, 8, 666, 2, 22, 444, 2002, 686, 1, 464, 646, 666, 646, 2, 6006, 22, 828, 888, 1, 2002, 8886888, 868, 464, 6, 868, 4224, 66, 646, 1, 828, 222, 646, 6006, 4, 22222, 6006, 68886, 44, 1, 828, 282, 4224, 686, 1, 42024, 4004, 424, 8886888, 1, 8008, 68286, 464, 68086, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

a(n) = 1 if and only if m ends with the digit 5.


LINKS

Table of n, a(n) for n=0..60.
P. De Geest, Smallest multipliers to make a number palindromic.


EXAMPLE

For n = 30 we have m = 3; 3*2 = 6 is a palindrome with even digits, so a(30) = 6.


PROG

(ARIBAS): stop := 500000; for n := 0 to 60 do k := 1; test := true; while test and k < stop do mp := omit_trailzeros(n)*k; if test := not all_even(mp) or mp <> int_reverse(mp) then inc(k); end; end; if k < stop then write(mp, " "); else write(1, " "); end; end;


CROSSREFS

Cf. A050782, A062293, A061816, A061906. Values of k are given in A061916.
Sequence in context: A324122 A324349 A092384 * A138565 A137316 A064851
Adjacent sequences: A061912 A061913 A061914 * A061916 A061917 A061918


KEYWORD

base,sign,easy


AUTHOR

Klaus Brockhaus, Jun 25 2001


STATUS

approved



