The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061898 Swap each prime in factorization of n with "neighbor" prime. 6

%I

%S 1,3,2,9,7,6,5,27,4,21,13,18,11,15,14,81,19,12,17,63,10,39,29,54,49,

%T 33,8,45,23,42,37,243,26,57,35,36,31,51,22,189,43,30,41,117,28,87,53,

%U 162,25,147,38,99,47,24,91,135,34,69,61,126,59,111,20,729,77,78,71,171,58

%N Swap each prime in factorization of n with "neighbor" prime.

%C Here "neighbor" primes are just paired in order: 2<->3, 5<->7, 11<->13, etc. Self-inverse permutation of the integers. Multiplicative.

%H Alois P. Heinz, <a href="/A061898/b061898.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%e a(60) = 126 since 60 = 2^2*3*5, swapping 2<->3 and 5<->7 gives 3^2*2*7 = 126 (and of course then a(126) = 60).

%p p:= proc(n) option remember; `if`(numtheory[pi](n)::odd,

%p nextprime(n), prevprime(n))

%p end:

%p a:= n-> mul(p(i[1])^i[2], i=ifactors(n)[2]):

%p seq(a(n), n=1..80); # _Alois P. Heinz_, Sep 13 2017

%t p[n_] := p[n] = If[OddQ[PrimePi[n]], NextPrime[n], NextPrime[n, -1]];

%t a[1] = 1; a[n_] := Product[p[i[[1]]]^i[[2]], {i, FactorInteger[n]}];

%t Array[a, 80] (* _Jean-François Alcover_, Jun 10 2018, after _Alois P. Heinz_ *)

%o (PARI) a(n) = my(f=factor(n)); for (i=1, #f~, ip = primepi(f[i,1]); if (ip % 2, f[i,1] = prime(ip+1), f[i,1] = prime(ip-1))); factorback(f); \\ _Michel Marcus_, Jun 09 2014

%Y Cf. A045965.

%K easy,nonn,look,mult

%O 1,2

%A _Marc LeBrun_, May 14 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 20:41 EDT 2021. Contains 343089 sequences. (Running on oeis4.)