login
A061803
Sum of n-th row of triangle of 4th powers: 1; 1 16 1; 1 16 81 16 1; 1 16 81 256 81 16 1; ...
2
1, 18, 115, 452, 1333, 3254, 6951, 13448, 24105, 40666, 65307, 100684, 149981, 216958, 305999, 422160, 571217, 759714, 995011, 1285332, 1639813, 2068550, 2582647, 3194264, 3916665, 4764266, 5752683, 6898780, 8220717, 9737998
OFFSET
1,2
FORMULA
a(n) = n(6n^4 + 10n^2 - 1)/15. - Dean Hickerson, Jun 06 2001
G.f.: x*(1+x)^2*(1+10*x+x^2)/(1-x)^6. - Colin Barker, Apr 20 2012
EXAMPLE
a(3) = 115 = 1 + 16 + 81 + 16 + 1
MATHEMATICA
Table[Total[2Range[n-1]^4]+n^4, {n, 30}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 18, 115, 452, 1333, 3254}, 30] (* Harvey P. Dale, Aug 23 2016 *)
PROG
(PARI) { for (n=1, 1000, write("b061803.txt", n, " ", n*(6*n^4 + 10*n^2 - 1)/15) ) } \\ Harry J. Smith, Jul 28 2009
CROSSREFS
Sequence in context: A125328 A126486 A251937 * A207103 A101089 A022678
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, May 28 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org) and Jason Earls, May 28 2001
STATUS
approved