This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061799 Smallest number with at least n divisors. 13
 1, 2, 4, 6, 12, 12, 24, 24, 36, 48, 60, 60, 120, 120, 120, 120, 180, 180, 240, 240, 360, 360, 360, 360, 720, 720, 720, 720, 720, 720, 840, 840, 1260, 1260, 1260, 1260, 1680, 1680, 1680, 1680, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 5040, 5040, 5040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Smallest number which can be expressed as the least common multiple of n distinct numbers. - Amarnath Murthy, Nov 27 2002 Also smallest possible member of a set of n+1 numbers with pairwise distinct GCD's. [Following an observation by Charles R Greathouse IV] (Proof: If the smallest number min(S) of the set (with card(S)=n+1) has a distinct GCD with each of the other n numbers, then it must have at least n distinct divisors (because any GCD is a divisor). It is then easy to choose larger members of the set so that all pairs of elements have pairwise distinct GCD's, e.g., by successively multiplying by distinct and sufficiently large primes.) - M. F. Hasler, Mar 05 2013 LINKS T. D. Noe, Table of n, a(n) for n=1..2000 (using A002182) EXAMPLE a(5)=12 since every number less than 12 has fewer than five divisors (1 has one; 2,3,5,7 and 11 have two each; 4 and 9 have three each; 6,8 and 10 have four each) while 12 has at least five (in fact it has six: 1,2,3,4,6 and 12). MATHEMATICA Reap[ For[ n = 1, n <= 100, n++, s = n; While[ DivisorSigma[0, s] < n, s++]; Sow[s] ] ][[2, 1]] (* Jean-François Alcover, Feb 16 2012, after Pari *) PROG (PARI) for(n=1, 100, s=n; while(numdiv(s)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.