login
A061769
The least number k = a(n) > a(n-1) for which k!/(k+1)^m for increasing m's.
1
1, 5, 11, 23, 35, 39, 44, 47, 59, 71, 79, 89, 119, 143, 179, 239, 359, 479, 629, 671, 719, 1079, 1119, 1259, 1343, 1439, 1889, 2015, 2159, 2239, 2519, 2879, 3023, 3359, 3779, 4031, 4319, 5039, 6047, 6719, 7559, 8639, 10079
OFFSET
0,2
EXAMPLE
a(5) = 35 (one of the few composites in this sequence) because 35 is the least number such that 35!/36^7 and 23!/24^6.
MATHEMATICA
l = 0; Do[k = Max[l - 1, 1]; While[ !IntegerQ[ k! / (k + 1)^n], k++ ]; If[ k > l, l = k; Print[k] ], {n, 0, 1500} ]
CROSSREFS
Sequence in context: A295149 A143127 A235386 * A169744 A190148 A281875
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jun 21 2001
STATUS
approved