This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061762 a(n) = (sum of digits of n) + (product of digits of n). 14
 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 7, 15, 23, 31, 39, 47 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Fixed points a(m)=m are m = {0,19,29,39,49,59,69,79,89,99}. Is this list complete? - Zak Seidov, Aug 22 2007 The above list of fixed points is complete. If a(m) = m, then m < 10^21 and there are no other fixed points < 10^21. - Chai Wah Wu, Aug 14 2017 REFERENCES S. Parmeswaran, S+P numbers, Mathematics Informatics Quarterly, Vol. 9, No. 3 (Sep 1999), Bulgaria. LINKS Harry J. Smith, Table of n, a(n) for n = 0..1000 FORMULA a(n) = A007953(n) + A007954(n). EXAMPLE a(14) = 1+4 + 1*4 = 9. MAPLE read("transforms") : A061762 := proc(n)     digsum(n)+A007954(n) ; end proc: # R. J. Mathar, Aug 13 2012 MATHEMATICA Table[Plus @@ IntegerDigits[n] + Times @@ IntegerDigits[n], {n, 0, 75}] (* Jayanta Basu, Apr 05 2013 *) PROG (PARI) SumD(x)= { s=0; while (x>9, s=s+x-10*(x\10); x=x\10); return(s + x) } ProdD(x)= { p=1; while (x>9, p=p*(x-10*(x\10)); x=x\10); return(p*x) } { for (n=0, 1000, write("b061762.txt", n, " ", SumD(n) + ProdD(n)) ) } \\ Harry J. Smith, Jul 27 2009 (Python) from operator import mul from functools import reduce def A067162(n):     a = [int(d) for d in str(n)]     return sum(a)+reduce(mul, a) # Chai Wah Wu, Aug 14 2017 CROSSREFS Cf. A007953, A007954, A061763, A038366, A074871. See A130858 for the smallest inverse. Sequence in context: A088133 A115299 A076312 * A136614 A245627 A097586 Adjacent sequences:  A061759 A061760 A061761 * A061763 A061764 A061765 KEYWORD nonn,base,easy AUTHOR Amarnath Murthy, May 20 2001 EXTENSIONS Corrected and extended by Larry Reeves (larryr(AT)acm.org) and Matthew Conroy, May 23 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.