login
a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by 9.
19

%I #10 Jun 24 2016 12:52:04

%S 0,9,18,1017,1091016,109181091015,109181017109181091014,

%T 1091810171091016109181017109181091013,

%U 10918101710910161091810910151091810171091016109181017109181091012

%N a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by 9.

%C In A061511-A061522, A061746-A061750 when the incremented digit exceeds 9 it is written as a 2-digit string. So 9+1 becomes the 2-digit string 10, etc.

%C Considering each term as a sequence of digits, the sequence converges to the limit 109181017109101610918109..... - _M. F. Hasler_, Jun 24 2016

%C a(13) has 1078 decimal digits. - _Michael De Vlieger_, Jun 24 2016

%H Michael De Vlieger, <a href="/A061750/b061750.txt">Table of n, a(n) for n = 0..12</a>

%t NestList[FromDigits@ Flatten@ Map[IntegerDigits, IntegerDigits@ # + 9] &, 0, 8] (* _Michael De Vlieger_, Jun 24 2016, after _Harvey P. Dale_ at A061512 *)

%o (PARI) A061750(n=2, a=9, m=9)={for(n=2,n, a=eval(concat(apply(t->Str(t+m), digits(a)))));if(n,a)} \\ If only the 2nd argument is given, then the operation is applied once to that argument. - _M. F. Hasler_, Jun 24 2016

%Y Cf. A061511 - A061522, A061746 - A061749; A061581 - A061587.

%K base,nonn

%O 0,2

%A _Amarnath Murthy_, May 08 2001

%E More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001