login
A061747
a(0) = 0; a(n) is obtained by incrementing each digit of a(n-1) by 8.
2
0, 8, 16, 914, 17912, 91517910, 179139151798, 91517911179139151716, 1791391517999151791117913915914, 91517911179139151717179139151799915179111791317912
OFFSET
0,2
COMMENTS
In A061511-A061522, A061746-A061750 when the incremented digit exceeds 9 it is written as a 2-digit string. So 9+1 becomes the 2-digit string 10, etc.
Considering each term as a sequence of digits, the subsequences a(2n) and a(2n-1) converge to two different fixed points of the operation, 17913915179... and 915179111791391517.... More precisely, the digits of a(n) except the last are the first digits of a(n+2). - M. F. Hasler, Jun 24 2016
a(16) has 1270 decimal digits. - Michael De Vlieger, Jun 24 2016
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..15
MATHEMATICA
NestList[FromDigits@ Flatten@ Map[IntegerDigits, IntegerDigits[#] + 8] &, 0, 9] (* Michael De Vlieger, Jun 24 2016, after Harvey P. Dale at A061512 *)
PROG
(PARI) A061747(n=2, a=if(n, 8), m=8)={for(n=2, n, a=eval(concat(apply(t->Str(t+m), digits(a))))); a} \\ If only the 2nd argument is given, then the operation is applied once to that argument. - M. F. Hasler, Jun 24 2016
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, May 08 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
STATUS
approved